
Lecture 3: The Discrete-Time Representative Agent Model
In this lecture I consider a discrete-time representative agent model with money in the utility function

originally due to Brock (1974,1975). I begin, however, by considering the necessary and su¢ cient conditions

for the household�s optimisation problem in general in discrete-time representative agent models.

1 Necessary and Su¢ cient Conditions for Optimality

We begin with a useful property of concavity.

1.1 A useful property of concavity

Recall that a real-valued twice-di¤erentiable function f on the interval S is concave on S if and only if

f 00 (x) � 0 on S: Let f be a concave function on S and let x and x� be any two elements of S: By the mean

value theorem there exists an � 2 [0; 1] such that f (x) � f (x�) = f 0 (�x+ (1� �)x�) (x� x�) : Note that

the derivative of the right-hand side of this equation with respect to � is f 00 (�x+ (1� �)x�) (x� x�)2 � 0:

Thus, f 0 (�x+ (1� �)x�) (x� x�) � f 0 (x�) (x� x�) : We have then that concavity implies that

f (x)� f (x�) � f 0 (x�) (x� x�) : (1)

Now suppose that f (x) is a twice-di¤erentiable concave function on the interval S and that there exists

x� 2 S such that the �rst-order condition for a maximum, f 0 (x�) = 0, is satis�ed. We can use inequality

(1) to prove that x� maximises f on S. Let x be any other element of S. Then by inequality (1) and

the �rst-order condition f (x)� f (x�) � f 0 (x�) (x� x�) = 0: Thus, given that f is concave, the �rst-order

condition is su¢ cient for a maximum.

1.2 Finite-horizon optimisation problems

1.2.1 A two-period problem

Consider the simple two-period optimisation problem:

maxu(c0) + �u(c1); 0 < � < 1 subject to
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c0 + k1 = f (k0)

c1 + k2 = f (k1)

c0 � 0, c1 � 0, k1 � 0, k2 � 0, k0 given.

Assume that the functions u and f are twice-di¤erentiable concave functions with strictly positive �rst

derivatives. We show that if there is a (c�0; c
�
1; k

�
1 ; k

�
2) such that c

�
0 > 0, c�1 > 0, the budget constraints are

satis�ed, k�2 = 0 and �u
0(c�1)f

0 (k�1) = u
0(c�0) (the Euler equation) then this (c

�
0; c

�
1; k

�
1 ; k

�
2) is an optimum:

Our proof involves demonstrating that utility is at least as great at (c�0; c
�
1; k

�
1 ; k

�
2) as it is at any other

admissible (c0; c1; k1; k2) : Before proceeding note that it is admissible for consumption to be zero even though

the utility function might not be de�ned at zero. The logarithmic utility function, for example, goes to minus

in�nity as consumption falls to zero. However, since the solution has strictly positive consumption it would

always dominate an admissible (c0; c1; k1; k2) with zero consumption. So, we can restrict our comparison

consumption and capital 4-tuples to ones with strictly positive consumption in both periods.

We have that (c�0; c
�
1; k

�
1 ; k

�
2) is an optimum if

D := u(c0) + �u(c1)� u(c�0)� �u(c�1) � 0:

Using the concavity property in inequality (1), we have

D � u0(c�0) (c0 � c�0) + �u0(c�1) (c1 � c�1)

= u0(c�0) [f (k0)� k1 � f (k0) + k�1 ] + �u0(c�1) [f (k1)� k2 � f (k�1) + k�2 ]

by the budget constraints

= �u0(c�0) (k�1 � k1) + �u0(c�1) [f (k1)� f (k�1)] + �u0(c�1) (k�2 � k2)

because k0 is given

� [�u0(c�1)f
0 (k�1)� u0(c�0)] (k1 � k�1)� �u0(c�1) (k2 � k�2)

because f is concave
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= ��u0(c�1) (k2 � k�2)

= ��u0(c�1)k2 � 0 because �u0(c�1)k�2 = 0:

Thus, given our regularity assumptions and the initial condition, it is su¢ cient for a maximum that the

budget constraints, the Euler equation �u0(c1)f 0 (k1) = u0(c0); and the transversality condition �u0(c1)k2 = 0

hold.

Clearly satisfying the Euler equation is not necessary for an optimum. There might not exist a solution;

instead we might have a corner solution. It seems clear, however, that satisfying the transversality condition

is necessary. If the marginal utility of consumption is positive in period one it cannot be part of an optimum

to give up consumption to accumulate useless capital.

1.2.2 A T-period problem

We can extend the model to T periods:

max

TX
t=0

�tu(ct); 0 < � < 1 subject to

ct + kt+1 = f (kt) , t = 0; 1; :::; T � 1

ct � 0, kt+1 � 0, t = 0; 1; :::T , k0 given.

The Euler equations are:

�u0(c�t+1)f
0 �k�t+1� = u0(c�t ); t = 0; :::T � 1

and the transversality condition is

�Tu0(c�T )k
�
T+1 = 0:
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Using the same technique as in the 2-period case we have

D : =
TX
t=0

�t [u(ct)� u(c�t )]

�
TX
t=0

�tu0(c�t ) (ct � c�t ) by concavity of u

=
TX
t=0

�tu0(c�t )
�
f (kt)� kt+1 � f (k�t ) + k�t+1

�
by the budget constraints

�
TX
t=0

�tu0(c�t )
�
f 0 (k�t ) (kt � k�t )�

�
kt+1 � k�t+1

��
by the concavity of f

=
TX
t=1

�tu0(c�t )f
0 (k�t ) (kt � k�t )�

TX
t=0

�tu0(c�t )
�
kt+1 � k�t+1

�
by the initial conditions

=
TX
t=1

�t�1u0(c�t�1) (kt � k�t )�
TX
t=0

�tu0(c�t )
�
kt+1 � k�t+1

�
by the Euler equations

= ��Tu0(c�T )
�
kT+1 � k�T+1

�
� �Tu0(c�T )k�T+1 = 0:

Thus, given our regularity assumptions and the initial condition, it is su¢ cient for a maximum that

the budget constraints, the Euler equation and the transversality condition hold. If the marginal utility of

consumption is positive in period T it cannot be part of an optimum to give up consumption to accumulate

useless capital. Thus, the transversality condition is also necessary for a maximum. If we impose Inada

conditions that rule out corner solutions, then satisfying the Euler equation and the transversality condition

will be both necessary and su¢ cient.

1.3 In�nite-Horizon Problem

Consider the in�nite-horizon problem:

max
1X
t=0

�tu(ct); 0 < � < 1 subject to

ct + kt+1 = f (kt) , t 2 Z+

ct � 0, kt+1 � 0, t 2 Z+, k0 given.

The Euler equations are

�u0(c�t+1)f
0 �k�t+1� = u0(c�t ); t 2 Z+
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and the transversality condition is

lim
t!1

�tu0(c�t )k
�
t+1 = 0:

We can make a comparison solution argument here too. A technical detail is that if the utility function

is bounded from below and the comparison consumption goes to zero over time the sum of discounted utility

for the comparison allocation may not converge. So we write

D � lim inf
T!1

TX
t=0

�t [u(ct)� u(c�t )]

and proceed as before. We will �nd that given the budget constraints and the initial condition, the Euler

equation and the transversality condition are su¢ cient for optimality. But, now it is not quite so clear that

the transversality condition is necessary.

That the transversality condition is a necessary condition in problems similar to this one was �rst proved

by Weitzman (1973). His proof, however, requires the strong assumption that the utility function is bounded

and so it is not applicable to the logarithmic case or to any utility function with the form c1��= (1� �), where

� > 1. Ekeland and Scheinkman (1986) showed that under certain assumptions, the transversality condition

is also necessary for unbounded utility functions. Both Weitzman (1973) and Ekeland and Scheinkman

(1986) are di¢ cult papers, to say the least. Kamihigashi (2000) relaxes some of Ekeland and Scheinkman�s

conditions and his proof is beautifully simple. It does however require that the sequence
�
�tu (ct)

	
be

summable (that is the sum of absolute values converges) at an optimum. This is slightly naughty because it

is not an assumption on the fundamentals of the model. He also requires that there exists a constant � and

a summable sequence fbtg such that u0 (ct) ct � �u (ct) + bt: This may or may not be reasonable, but lacks

intuitive appeal (at least to me).

The idea behind his proof is as follows. Suppose that
�
c�t ; k

�
t+1

	
is optimal and consider a comparison

allocation

(ct; kt+1) =
�
c�t ; k

�
t+1

�
, t = 0; :::; T � 1

(cT ; kT+1) =
�
c�T + (1� �) kT+1; �k�T+1

�
, t = T

(ct; kt+1) =
�
�c�t ; �k

�
t+1

�
; t = T + 1; ::: ,

where � 2 (0; 1). This comparison allocation is possible because the production function is concave. Because
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�
c�t ; k

�
t+1

	
is optimal

lim inf
T!1

TX
t=0

�t [u(ct)� u(c�t )] � 0)

�T [u (c�T + (1� �) kT+1)� u(c�T )] + lim inf
S!1

SX
t=T+1

�t [u(�c�t )� u(c�t )] � 0)

�T [u (c�T + (1� �) kT+1)� u(c�T )]
1� � � lim sup

S!1

SX
t=T+1

�t
u(c�t )� u(�c�t )

1� � :

Kamihigashi demonstrates that his assumptions imply that the right-hand side equals zero as T !1. (This

is not trivial but does not require any advanced math.) Then using the de�nition of a derivative we have

that as �! 1

lim
T!1

�Tu0 (c�T ) kT+1 � 0:

To summarise these results about transversality conditions. The transversality condition is that residual

term that you need to have be non-negative when you do the standard proof that the constraints, the Euler

equations and transversality condition are su¢ cient. Given certain assumptions, this transversality condition

is also necessary for an optimum. If the Inada conditions are satis�ed then under these assumptions the

constraint, Euler equations and the transversality condition are necessary and su¢ cient for an optimum.

2 Brock�s (1974,1975) Model

2.1 The households

The economy is inhabited by a representative household and its government. Each period, the household

receives an exogenous endowment of the single perishable consumption good and it pays a lump-sum tax. It

consumes the good and saves money. Utility is given by

1X
t=0

�tu(ct;mt); 0 < � < 1;

where ct � 0 is time-t consumption and mt � 0 is the household�s end-of-period-t demand for real money

balances to be carried into period t+ 1:

The household maximises its utility subject to the sequence of within-period budget constraints

mt = y � � t � ct + (Pt�1=Pt)mt�1; t 2 Z+; (2)
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where y > 0 is the constant per-period endowment, � t < y is the period-t real lump-sum tax and Pt is the

time-t price of the good. Attention is restricted to outcomes where 1=Pt > 0 for every t 2 Z+. There is,

however, always a non-monetary equilibrium where 1=Pt = 0 for every t 2 Z+. In this outcome, money is

not held and the household consumes its after-tax endowment each period.

It is assumed that u is strictly increasing in its �rst argument, weakly increasing in its second argument,

concave and continuously di¤erentiable on R2++. It is also assumed that Kamihigashi�s assumptions hold

so that the transversality condition is necessary. It is assumed that uc (c;m) ! 1 as c & 0, um(c;m) �

uc (c;m)!1 as m& 0 and that there exists �u 2 R++ such that limm!1 uc(c;m) = �u:.

There are two possible cases for the marginal utility of real balances. Either the marginal utility it is

strictly positive and goes to zero as real balances go to in�nity or there is a satiation point (which can depend

on c) m̂ (c) such that um(c;m) > (=) 0 if m < (�) m̂ (c).

The Euler equations are

uc(ct;mt) = um(ct;mt) + (�Pt=Pt+1)uc(ct+1;mt+1); t 2 Z+ (3)

and the transversality condition is

lim
t!1

�t [uc(ct;mt)� um(ct;mt)]mt � 0: (4)

The Euler equation (3) has the following interpretation. The household is indi¤erent between a (small)

one-unit increase in period-t consumption, which yields utility of uc (ct;mt) ; and foregoing this consumption

and acquiring a one-unit increase in period-t real balances, which yield current utility of um (ct;mt) and

which can be traded next period for Pt=Pt+1 units of the consumption good which yields a discounted utility

of (�Pt=Pt+1)uc(ct+1;mt+1):

The transversality condition is the analogue of the period-T complementary slackness condition in a T -

period �nite-horizon problem. This complementary slackness condition states that either �T [uc(cT ;mT ) �

um(cT ;m)] = 0 or mT = 0. Given our Inada conditions, mT > 0 and the household is willing to hold real

balances only up to the point where the marginal utility gain from the current liquidity services of money

equals the marginal utility loss from decreased current consumption. In this in�nite-horizon problem equation

(4) implies that either the optimal value of the state variable, mt; goes to zero as time goes to in�nity or

that its marginal contribution to the maximized value of the objective function, �t [uc(ct;mt)� um(ct;mt)]

becomes non-positive.

Kamigashi�s results imply that the transversality condition is necessary. Brock (1974) demonstrates that
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the Inada conditions ensure that the solution is interior and the Euler equations are necessary as well. If

the Euler equations (3) are necessary then substituting them into the transversality condition (4) yields an

alternative speci�cation of the transversality condition (which is how it was written in the last lecture):

lim
t!1

�tuc(ct;mt)mt = 0: (5)

2.2 The government

The government�s within-period budget constraint, assumed to hold with equality, is

mt = g � � t + (Pt�1=Pt)mt�1; t 2 Z+; (6)

where g 2 [0; y) is the constant per-period public spending. Let Mt be the time-t money supply. It is

assumed that the money supply grows at a constant proportional rate: Mt+1=Mt = � > 0; t 2 Z+:

2.3 Equilibrium

The household budget constraint (2) and the government budget constraint (6) imply the (non-independent)

economy-wide resource constraint

ct = c � y � g; t 2 Z+: (7)

Substituting equation (7) and the money market clearing condition into the Euler equation (3) and the

transversality condition (5) yields

�uc(c;mt+1)mt+1 = �[uc(c;mt)� um(c;mt)]mt; t 2 Z+ (8)

lim
t!1

�tuc(c;mt)mt = 0: (9)

There are two potential types of equilibria. First, given the constant fundamentals (y; g; �); there is

a fundamental (or Markov or minimal-state-variable) equilibrium where mt = m > 0 for every t 2 Z+:

Constant real balances clearly satisfy the transversality condition (9). By equilibrium condition (8) such an

equilibrium has

�um(c;m) = (�� �)uc(c;m): (10)

If � < � or if � = � and there is no satiation point for real balances then no fundamental equilibrium
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exists. If � = � and there is satiation in real balances then any m that is at least as great as the satiation

point m̂ (c) satis�es equation (10). Such an outcome is a Friedman (1969) Optimal Quantity of Money

equilibrium. If � > �; then the Inada conditions imply that at least one fundamental equilibrium exists. For

this case, the additional restriction that real balances are a normal good ensures uniqueness.

In addition to fundamental equilibria, there can be a variety of non-fundamental (or non-stationary)

equilibria. An equilibrium can be stable, with monotonic or cyclical convergence; it can be unstable, with

either monotonic or cyclical divergence; there can be limit cycles and there can be chaotic behaviour. (See

Matsuyama (1991). Azariadis�s (1993) textbook is good for learning about exotic dynamics.) We are

interested in equilibria where real balances go to in�nity; such equilibria are called de�ationary bubbles.

3 De�ationary bubbles

This section considers the existence of de�ationary bubbles.

3.1 The de�nition of a de�ationary bubble

Economists have many di¤erent de�nitions of bubbles, depending on the scenario under consideration. Here

there are equilibria which depend solely on the fundamentals (and, hence, are not time varying) and equilibria

which depend on time as well as on the fundamentals. Of the equilibria which depend on time as well as on

the fundamentals, the ones that go to in�nity over time are de�ned to be de�ationary bubbles.

Note that this de�nition does not imply that any equilibrium sequence of prices that goes to zero must

be a de�ationary bubble or that all de�ationary bubbles must have the price level going to zero. When

the nominal money stock is falling, then a fundamental equilibrium has Pt+1=Pt = Mt+1=Mt = � < 1 and

the price level goes to zero over time. When the nominal money stock is rising, a de�ationary bubble has

Pt+1=Pt = �mt=mt+1 and can be associated with rising prices if real balances are rising at a rate less than

�. Along such a path however, in�ation will be less than the associated fundamental equilibrium�s in�ation

rate of �.

3.2 The existence of de�ationary bubbles

3.2.1 The case of � > 1

Suppose that � > 1 and conditions are such that the transversality condition is necessary. Then no de�a-

tionary bubbles exist. To see this let xt � uc(c;mt)mt > 0. By equilibrium condition (8), xt+1=xt = (�=�) [1

�um(c;mt)=uc(c;mt)]; t 2 Z+. By the Inada conditions, xt+1=xt ! �=� asmt !1. Thus, 8� > 0;9T 2 Z+
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such that xT+t+1=xT+t > �=� � �; t 2 Z+. Let � = (� � 1)=�: Then �xT+t+1 > xT+t; t 2 Z+: Hence,

�T+txT+t cannot go to zero as t!1 and the transversality condition (9) is violated.

3.2.2 The case of � = 1

When � = 1, there exist pathological cases where the transversality condition is satis�ed and de�ationary

bubbles exist. Obstfeld and Rogo¤ (1986) provide an example (suggested by Guillermo Calvo and Roque

Fernandez). The utility function is separable and has the property that the marginal utility of money is

1= ln(m) for m large. If initial real balances exceed the steady state then the sequence, fmtg that satis�es

equilibrium condition (8) also satis�es the transversality condition (9) and has mt !1.

3.2.3 The case of � < � < 1

If � < � < 1 and fmtg satis�es equilibrium condition (8) then fmtg is an equilibrium sequence of real

balances. To see this, if fmtg satis�es equilibrium condition (8) then xt+1=xt � �=�; t 2 Z+. Thus,

�txT+t � �txT ! 0 as t!1; T 2 Z+. Thus transversality condtion (9) is satis�ed.

When � < � < 1 it is easy to �nd examples of de�ationary bubble equilibria. See the homework

assignment.

3.2.4 The case of � � �

When � � � de�ationary bubbles cannot exist. This a consequence of the Euler equilibrium condition (8),

rather than the transversality condition (9). By equilibrium condition (8),mt+1 = (�=�) [uc(c;mt)=uc(c;mt+1)� um(c;mt)=uc(c;mt+1)]mt,

t 2 Z+: Thus,mt+1 � (�=�) [uc(c;mt)=uc(c;mt+1)]mt, t 2 Z+ and, hence,mt � (�=�)t [uc(c;m0)=uc(c;mt)]m0.

Thus, limt!1mt � limt!1 (�=�)
t
[uc(c;m0)=uc(c;mt)]m0 � [uc(c;m0)=�u]m0 < 1:

3.3 The relationship between the transversality condition and the "no-bubble"

boundary condition

Turning to a di¤erent scenario, consider the market for a particular company�s stock in a model without

money in the utility function. Under certainty the household�s Euler equation corresponding to that stock

says that ptu0 (ct) = � (pt+1 + dt+1)u
0 (ct+1), 0 < � < 1;where u is the within-period utility function and

ct, pt and dt are the time-t consumption demand, stock price (in terms of the consumption good) and

(exogenous) dividend, respectively. Suppose that, as in the previous model, ct = c � y � g, t 2 Z+: Then,

solving the Euler equation forward would yield pt =
P1

s=1 �
sdt+1 + limT!1 �

T pt+T : Thus, the stock price
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consists of a term Ft �
P1

s=1 �
sdt+1, which depends on the fundamentals (that is, the dividends), and a

term Ct � limT!1 �
T pt+T .

This latter term may be strictly positive if investors have self-ful�lling expectations that the price will rise

by more than is justi�ed by the fundamentals. Alternatively, this term may be written as Ct = k�
t, where k

� 0. Solutions where k > 0 and, hence Ct 6= 0 are often referred to as rational or equilibrium bubbles. They

might be viewed as unlikely or not "sensible" as they are not Markov or "minimal-state-variable" solutions

in McCallum�s (1983) sense as they depend on an extraneous variable: calendar time. In theoretical models

it is typical to impose the boundary condition limT!1 �
T pt+T = 0 to rule out such equilibria. In empirical

models, deviations between pt and the fundamental component, Ft; are often referred to as a bubble and

researchers often test for the existence of a bubble by testing whether the price can be explained by the

fundamentals: in this example, this would be testing whether pt = Ft:

The boundary condition ruling out bubble equilibria looks like a transversality condition and some

researchers, for example Froot and Obstfeld (1991), call this condition a transversality condition. How-

ever, it is not related to the transversality condition which, under certain assumptions, is necessary and

su¢ cient for household optimality. In the model of stock prices this transversality condition would be

limT!1 �
Tu0 (cT ) pT sT � 0, where st is the household�s time-t holdings of the stock.
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